Tuesday, 21 March 2017

Inverse Relation

                                       
Inverse Relation
                                  
Inverse Relation                                                                                  Let R be a relation from A to B. The inverse relation of R,denoted by  R^(-1)   is a relation from B to A and is denoted by                                               

  R^(-1)={( y, x) : x ɛ A, y ɛ B,(x, y) ɛ R}.                                                                                       In other words, the inverse relation is obtained by reversing each of the ordered pairs belong to R Thus,                           (x,y) ɛ R <=> (y, x) ɛ R^(-1)                                                                                           Evidently, the range of R is the domain of R and vice-versa. If A=B, then R and R are both relations on A.

No comments:

Post a comment

Intersection of subring

How to prove the intersection of two subrings is a subring? Let S1 and S2  be two subrings of a ring R. Then S1∩S2 is not empty since ...